770 research outputs found

    Real-time 3D Semantic Scene Completion Via Feature Aggregation and Conditioned Prediction

    Full text link
    Semantic Scene Completion (SSC) aims to simultaneously predict the volumetric occupancy and semantic category of a 3D scene. In this paper, we propose a real-time semantic scene completion method with a feature aggregation strategy and conditioned prediction module. Feature aggregation fuses feature with different receptive fields and gathers context to improve scene completion performance. And the conditioned prediction module adopts a two-step prediction scheme that takes volumetric occupancy as a condition to enhance semantic completion prediction. We conduct experiments on three recognized benchmarks NYU, NYUCAD, and SUNCG. Our method achieves competitive performance at a speed of 110 FPS on one GTX 1080 Ti GPU.Comment: Accepted by ICI

    Conditional DETR V2: Efficient Detection Transformer with Box Queries

    Full text link
    In this paper, we are interested in Detection Transformer (DETR), an end-to-end object detection approach based on a transformer encoder-decoder architecture without hand-crafted postprocessing, such as NMS. Inspired by Conditional DETR, an improved DETR with fast training convergence, that presented box queries (originally called spatial queries) for internal decoder layers, we reformulate the object query into the format of the box query that is a composition of the embeddings of the reference point and the transformation of the box with respect to the reference point. This reformulation indicates the connection between the object query in DETR and the anchor box that is widely studied in Faster R-CNN. Furthermore, we learn the box queries from the image content, further improving the detection quality of Conditional DETR still with fast training convergence. In addition, we adopt the idea of axial self-attention to save the memory cost and accelerate the encoder. The resulting detector, called Conditional DETR V2, achieves better results than Conditional DETR, saves the memory cost and runs more efficiently. For example, for the DC55-ResNet-5050 backbone, our approach achieves 44.844.8 AP with 16.416.4 FPS on the COCO valval set and compared to Conditional DETR, it runs 1.6×1.6\times faster, saves 7474\% of the overall memory cost, and improves 1.01.0 AP score

    Recursive Generalization Transformer for Image Super-Resolution

    Full text link
    Transformer architectures have exhibited remarkable performance in image super-resolution (SR). Since the quadratic computational complexity of the self-attention (SA) in Transformer, existing methods tend to adopt SA in a local region to reduce overheads. However, the local design restricts the global context exploitation, which is crucial for accurate image reconstruction. In this work, we propose the Recursive Generalization Transformer (RGT) for image SR, which can capture global spatial information and is suitable for high-resolution images. Specifically, we propose the recursive-generalization self-attention (RG-SA). It recursively aggregates input features into representative feature maps, and then utilizes cross-attention to extract global information. Meanwhile, the channel dimensions of attention matrices (query, key, and value) are further scaled to mitigate the redundancy in the channel domain. Furthermore, we combine the RG-SA with local self-attention to enhance the exploitation of the global context, and propose the hybrid adaptive integration (HAI) for module integration. The HAI allows the direct and effective fusion between features at different levels (local or global). Extensive experiments demonstrate that our RGT outperforms recent state-of-the-art methods quantitatively and qualitatively. Code is released at https://github.com/zhengchen1999/RGT.Comment: Code is available at https://github.com/zhengchen1999/RG
    • …
    corecore